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We derive, from conformal invariance and quantum gravity, the multifractal
spectrum f(a) of the harmonic measure (i.e., electrostatic potential, or diffusion
field) near any conformally invariant fractal in two dimensions. It gives the
Hausdorff dimension of the set of points where the potential varies with dis-
tance r to the fractal frontier as ra. First examples are a random walk, i.e.,
a Brownian motion, a self-avoiding walk, or a critical percolation cluster. The
generalized dimensions D(n) as well as the multifractal functions f(a) are
derived, and are all identical for these three cases. The external frontiers of a
Brownian motion and of a percolation cluster are thus identical to a self-avoid-
ing walk in the scaling limit. The multifractal (MF) function f(a, c) of the elec-
trostatic potential near any conformally invariant fractal boundary, like a criti-
cal O(N) loop or a Q-state Potts cluster, is given as a function of the central
charge c of the associated conformal field theory. The dimensions DEP of the
external perimeter and DH of the hull of a critical scaling curve or cluster obey
the superuniversal duality equation (DEP − 1)(DH − 1)=1

4 . Finally, for a con-
formally invariant scaling curve which is simple, i.e., without double points, we
derive higher multifractal functions, like the universal function f2(a, aŒ) which
gives the Hausdorff dimension of the points where the potential varies jointly
with distance r as ra on one side of the curve, and as raŒ on the other. The
general case of the potential distribution between the branches of a star made of
an arbitrary number of scaling paths is also treated. The results apply to critical
O(N) loops, Potts clusters, and to the SLEo process. We present a duality
between external perimeters of Potts clusters and O(N) loops at their critical
point, as well as the corresponding duality in the SLEo process for ooŒ=16.

KEY WORDS: Multifractality; conformal invariance; harmonic measure;
Brownian motion; self-avoiding walks; percolation; Potts clusters; O(N) model;
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1. INTRODUCTION

Quantum field theory can be described very generally in terms of the
statistics of Brownian paths and of their intersections. (1) This equivalence
is used in polymer theory (1) and in rigorous studies of second-order phase
transitions and field theories. (2) In probability theory, non trivial properties
of Brownian paths have led to intriguing conjectures. Mandelbrot (3)

suggested for instance that in two dimensions, the external frontier of a
planar Brownian path has a Hausdorff dimension D=4/3, identical to
that of a planar self-avoiding walk, i.e., a polymer. Families of universal
critical exponents are associated with intersection properties of sets of
random walks. (4–10) In his famous article ‘‘Walks, walls, wetting and melt-
ing,’’ (4) Michael Fisher considered groups of 1D ‘‘vicious walkers’’ which
had to avoid each other: this amounts to considering 2D directed mutually-
avoiding random walks. The present paper deals with the scaling properties
of 2D mutually-avoiding random walks or fractal sets. Here the latter are
conformally invariant, allowing the use of techniques borrowed from ‘‘2D
quantum gravity,’’ where mutual avoidance is equivalent to solving a linear
problem. In ref. 4, the directedness of the walks made the problem tractable.
The general similarity in the scaling concepts used, however, certainly
allows one to dedicate this work as a tribute to the outstanding influence
Michael Fisher had in the general field of random scaling paths.

The concepts of generalized dimensions and associated multifractal
measures were developed two decades ago. (11–14) Universal geometrical
fractals, e.g., random walks, polymers, Ising or percolation models are
essentially related to standard critical phenomena and field theory, for
which conformal invariance in two dimensions (2D) has brought a wealth
of exact results (see, e.g., refs. 15–21). Multifractals and field theory must
have deep connections, since the algebras of their respective correlation
functions reveal intriguing similarities. (22)

In classical potential theory, i.e., that of the electrostatic or diffusion
field near random fractal boundaries such as diffusion limited aggregates
(DLA), or the fractal structures arising in critical phenomena, the self-
similarity of the latter is reflected in a multifractal (MF) behavior of the
potential. In DLA, the potential, also called harmonic measure, actually
determines the growth process and its scaling properties are intimately
related to those of the of the cluster itself. (23) In statistical fractals, the
Laplacian field is created by the random boundary, and should be deriv-
able, in a probabilistic sense, from the knowledge of the latter. A first
example was studied in ref. 24, where the fractal boundary, the ‘‘absorber,’’
was chosen to be a simple random walk (RW), or a self-avoiding walk
(SAW), accessible to renormalization group methods near four dimensions.
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In two dimensions (2D), conformal field theory (CFT) has lent
strong support to the conjecture that statistical systems at their critical
point, in their scaling (continuum) limit, produce conformally invariant
(CI) fractal structures, examples of which are the continuum scaling
limits of RW’s, SAW’s, critical Ising or Potts clusters (which presented
a mathematical challenge, see, e.g., refs. 25–27). The harmonic measure
near such clusters possesses universal multifractal exponents, as we
shall see. In analogy to the beautiful simplicity of the classical method
of conformal transforms to solve 2D electrostatics of Euclidean domains,
a universal solution is indeed possible for the planar potential near a CI
fractal.

A first exact example was solved within the whole universality class of
random or self-avoiding walks, and percolation clusters, which all possess
the same harmonic MF spectrum in two dimensions in refs. 28–30.
(Related results can be found in refs. 31–33.) After a detailed description of
this class and its link to quantum gravity, we address the general solution
for the potential distribution near any conformal fractal in 2D. (34) The
exact multifractal spectra describing the singularities of the potential, or,
equivalently, the distribution of local ‘‘electrostatic’’ wedge angles along
the fractal boundary, are given, and shown to depend only on the so-called
central charge c, a parameter which labels the universality class of the
underlying CFT. A further result, first obtained in ref. 34, is the existence
of a duality between the external frontiers of random clusters and their hulls,
which applies in particular to Fortuin-Kasteleyn clusters in the Potts model,
and to the so-called stochastic Löwner evolution (SLE) process (see below).

A new feature will be the consideration of higher multifractality, which
occurs in a natural way in the joint distribution of potential on both sides
of a random CI scaling path, or more generally, in the distribution of
potential between the branches of a star made of an arbitrary number of CI
paths. The associated universal multifractal spectrum will depend on two
variables, or more generally, on m variables in the case of an m-arm star.
We shall derive it first for Brownian motion or self-avoiding walks, (35)

before addressing the general case.
Consider a two-dimensional very large ‘‘absorber’’ S, which can be

a random walk, a self-avoiding walk, a percolation cluster, or, more
generally, a (critical) scaling path or cluster. Define the harmonic measure
H(w) as the probability that a random walker launched from infinity,
first hits the outer ‘‘hull’s frontier’’ or (accessible) frontier F(S) at
point w ¥ F(S). One then considers a covering of F by balls B(w, a) of
radius a, and centered at points w forming a discrete subset F/{a} of F.
Let H(F 5 B(w, a)) be the harmonic measure of the points of F in the
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ball B(w, a). We are interested in the moments of H, averaged over all
realizations of RW’s and S

Zn=7 C
w ¥ F/{a}

Hn(F 5 B(w, a))8 , (1)

where n can be, a priori, a real number. For very large absorbers S and
hull’s frontiers F(S) of average size R, one expects these moments to scale
as

Zn % (a/R)y(n), (2)

where the radius a serves as a microscopic cut-off, reminiscent of the lattice
structure, and where the multifractal scaling exponents y(n) encode gener-
alized dimensions

D(n)=
y(n)
n − 1

, (3)

which vary in a non-linear way with n. (11–14) Several a priori results are
known. D(0) is the Hausdorff dimension of the accessible frontier of the
fractal. By construction, H is a normalized probability measure, so that
y(1)=0. Makarov’s theorem, (36) here applied to the Hölder regular curve
describing the frontier, (37) gives the non trivial information dimension
y −(1)=D(1)=1. The multifractal formalism (11–14) further involves charac-
terizing subsets Fa of sites of the hull’s frontier F by a Hölder exponent a,
such that the H-measure of the frontier points in the ball B(w, a) of radius
a centered at wa ¥ Fa scales as

H(F 5 B(wa, a)) % (a/R)a. (4)

The Hausdorff or ‘‘fractal dimension’’ f(a) of the set Fa, such that

Card Fa % Rf(a), (5)

is given by the symmetric Legendre transform of y(n):

a=
dy

dn
(n), y(n)+f(a)=an, n=

df
da

(a). (6)

Because of the statistical ensemble average (1), values of f(a) can become
negative for some domains of a. (24) As we shall see, the associated expo-
nents y(n) above can be recast as those of star copolymers made of inde-
pendent RW’s in a bunch, diffusing away from a generic point of the
absorber.
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One can equivalently consider potential theory near the same fractal
boundary, now charged. One assumes the absorber to be perfectly con-
ducting, and introduces the harmonic potential H(z) at points z in the
domain exterior to F, with (Dirichlet) boundary condition H=0 on F,
and H=1 on a large exterior circle. Then the local behavior of the poten-
tial

H(z Q wa) ’ ra, r=|z − wa |, (7)

depends on the same a-exponent as the harmonic measure around point
wa ¥ Fa, and f(a)=dim Fa appears as the Hausdorff dimension of
boundary points inducing the local behavior (7).

Generalizations to higher conformal multifractality can be defined as
follows. When it is simple, i.e., without double points, the conformally
scaling curve F can be reached from both sides, with a distribution of
potential H+ on one side, and H− on the other, such that

H+(z Q wa, aŒ) ’ ra, H− (z Q wa, aŒ) ’ raŒ, (8)

when approaching a point wa, aŒ of subset Fa, aŒ at distance r=|z − wa, aŒ |
(Fig. 1). Then a double-multifractal spectrum f2(a, aŒ)=dim Fa, aŒ yields
the Hausdorff dimension of the set of points of type (a, aŒ). This can be
generalized to the multiple scaling behavior rai, i=1,..., m of the potential
in the m sectors of an m-arm scaling star, with a multifractal spectrum
fm({ai}), to be calculated below.

We shall use conformal tools (linked to quantum gravity), which allow
the mathematical description of random walks interacting with CI fractal

~ r
+

αH

w

H ~ r α’

Fig. 1. Double distribution of harmonic potential H on both sides of a simple scaling curve
(here a SAW, courtesy of Tom G. Kennedy). The local exponents on both sides of point
w=wa, aŒ are a and aŒ. The Hausdorff dimension of such points along the SAW is f2(a, aŒ).
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structures, thereby yielding a complete, albeit probabilistic, description of
the potential. The results are applied directly to well-recognized universal
fractals, like O(N) loops or Potts clusters. In particular, a subtle geometri-
cal structure is observed in Potts clusters, where the external perimeter
(EP), which bears the electrostatic charge, differs from the full cluster’s
hull. Its fractal dimension DEP is obtained exactly, generalizing the case of
percolation elucidated in ref. 38. We obtain a duality relation:

(DEP − 1)(DH − 1)=1
4 , (9)

where DH \ DEP is the hull dimension. Notice that the symmetric point of
(9) is 3/2, which is the maximum dimension of a simple (i.e., double-point-
free) conformally invariant random curve in the plane. This duality, which
actually gives clusters EP’s as simple O(n) loops at their critical point, was
first obtained in ref. 34. It predicts a corresponding duality in the SLE
process (see below).

The quantum gravity techniques used here are not yet widely known in
statistical mechanics, since they originally belonged to string or random
matrix theory. These techniques, moreover, are not yet within the realm of
rigorous mathematics. Contact will be made with rigorous results recently
obtained in probability theory for Brownian motion and conformally
invariant scaling curves, (31, 32, 39–41) or percolation, (42–44) which, by completely
different techniques (using in particular the so-called ‘‘stochastic Löwner
evolution’’ (39)), parallel those of statistical mechanics and quantum gravity.
In particular, our duality equation (9) brings in the ooŒ=16 duality, where
the SLEoŒ process is the simple frontier of the SLEo, for o \ 4. This of
course hints at deep connections between probability theory and conformal
field theory. In particular, the correspondence extensively used here, which
exists between scaling laws in the plane, and on a random Riemann surface
appears to be fundamental.

2. INTERSECTIONS OF RANDOM WALKS

Let us first define intersection exponents for random walks or Brow-
nian motions, which, while simpler than the multifractal exponents con-
sidered above, in fact generate the latter. Consider a number L of inde-
pendent random walks (or Brownian paths) B (l), l=1, .., L in Zd (or Rd),
starting at fixed neighboring points, and the probability

PL(t)=P 3 0
L

l, lŒ=1
(B (l)[0, t] 5 B (lŒ)[0, t])=”4 , (10)
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that the intersection of their paths up to time t is empty. (5, 7) At large times
and for d < 4, one expects this probability to decay as

PL(t) % t−zL, (11)

where zL(d) is a universal exponent depending only on L and d. Above the
upper critical dimension d=4, RWs almost surely do not intersect. The
existence of exponents zL in d=2, 3 and their universality have been pro-
ven, (10) and they can be calculated near d=4 by renormalization theory. (7)

A generalization was introduced (8) for L walks constrained to stay in a half-
plane, and starting at neighboring points on the boundary, with a non-
intersection probability P̃L(t) of their paths governed by a ‘‘surface’’ critical
exponent z̃L such that

P̃L(t) % t−z̃L. (12)

It was conjectured from conformal invariance arguments and numeri-
cal simulations that in 2D (8)

zL=h(c=0)
0, L = 1

24(4L2 − 1), (13)

and for the half-plane

2z̃L=h (c=0)
1, 2L+2=1

3L(1+2L), (14)

where h (c)
p, q denotes the Kač conformal weight

h (c)
p, q=

[(m+1) p − mq]2 − 1
4m(m+1)

, (15)

of a minimal conformal field theory of central charge c=1 − 6/m(m+1),
m ¥ Ng. (16) For Brownian motions c=0, and m=2. For L=1, the intrigu-
ing z1=1/8 is actually the disconnection exponent governing the proba-
bility that the origin of a single walk remains accessible from infinity
without crossing the walk.

To derive the conjectured intersection exponents above, the idea (28) is
to map the original random walk problem in the plane onto a random
lattice with planar geometry, or, in other words, in presence of two-dimen-
sional quantum gravity. (45) The key point is that the random walk intersec-
tion exponents on the random lattice are related to those in the plane.
Furthermore, the RW intersection problem can be solved in quantum
gravity. Thus, the exponents zL (Eq. (13)) and z̃L (Eq. (14) in the standard
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Euclidean plane are derived from this mapping to a random lattice or
Riemann surface.

Random surfaces, in relation to string theory, (46) have been the subject
and source of important developments in statistical mechanics in two-
dimensions. In particular, the discretization of string models led to the
consideration of abstract random lattices G, the connectivity fluctuations of
which represent those of the metric, i.e., pure 2D quantum gravity. (47) One
can then put any 2D statistical model (like Ising model, (48) self-avoiding
walks (49)) on the random planar graph G, thereby obtaining a new critical
behavior, corresponding to the confluence of the criticality of the random
surface G with the critical point of the original model. The critical system
‘‘dressed by gravity’’ has a larger conformal symmetry which allowed
Knizhnik, Polyakov, and Zamolodchikov (KPZ) (45, 50) to establish the exis-
tence of a relation between the conformal dimensions g

(0) of scaling
operators in the plane and those in presence of gravity, g:

g
(0)=g(g − c)/(1 − c), (16)

where c is a parameter related to the central charge of the statistical model
in the plane:

c=1 − 6c2/(1 − c); (17)

for a minimal model of the series (15), c=−1/m, and g
(0)
p, q — h (c)

p, q.
Let us now consider as a statistical model random walks on a random

graph. We know (8) that the central charge c=0, whence m=2, c=−1/2.
Thus the KPZ relation becomes

g
(0)=U(D) — 1

3 g(1+2g), (18)

which has exactly the same analytical form as the conjecture (14)! Thus,
from the KPZ equation one infers that the planar Brownian intersection
exponents Eqs. (13) and (14) are equivalent to Brownian intersection
exponents in quantum gravity:

gL=1
2(L − 1

2), (19)

g̃L=L. (20)

Let us now sketch the derivation of the latter quantum gravity expo-
nents. (28)

Consider the set of planar random graphs G, built up with, e.g.,
trivalent vertices tied together in a random way. The topology is fixed here
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to be that of a sphere (S) or a disc (D). The partition function is defined
as

Zq(b)=C
G

1
S(G)

e−b |G|, (21)

where q denotes the Euler characteristic q=2 (S), 1 (D); |G| is the
number of vertices of G, S(G) its symmetry factor. The partition sum con-
verges for all values of the parameter b larger than some critical bc. At
b Q b+

c , a singularity appears due to the presence of infinite graphs in (21)

Zq(b) ’ (b − bc)2 − cstr(q), (22)

where cstr(q) is the string susceptibility exponent. For pure gravity as
described in (21), the embedding dimension d=0 coincides with the central
charge c=0, and cstr(q)=2 − 5

4 q. (51)

Now, put a set of L random walks B={B (l)
ij , l=1,..., L} on the

random graph G with the special constraint that they start at the same
vertex i ¥ G, end at the same vertex j ¥ G, and have no intersections in
between. We introduce the L-walk partition function on the random
lattice (28):

ZL(b, z)= C
planar G

1
S(G)

e−b |G| C
i, j ¥ G

C
B(l)

ij
l=1,..., L

z |B|, (23)

where a fugacity z is associated with the total number |B|=|1L
l=1 B (l)| of

vertices visited by the walks.
We generalize this to the boundary case where G now has the topology

of a disc and where the random walks connect two sites i and j now on the
boundary “G:

Z̃L(b, b −, z)= C
disc G

e−b |G|e−bŒ |“G| C
i, j ¥ “G

C
B(l)

ij
l=1,..., L

z |B|, (24)

where e−bŒ is the fugacity associated with the boundary’s length.
The double grand canonical partition function (23) associated with

non-intersecting RW’s on a random lattice can be calculated exactly. (28)

The critical behavior of ZL(b, z) is then obtained by taking the double
scaling limit b Q bc (infinite random surface) and z Q zc (infinite RW’s).
The analysis of this singular behavior in terms of conformal dimensions
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is performed by using finite size scaling (FSS), (49) where one must have
|B| ’ |G|

1
2 . One obtains (28):

ZL(b, z) ’ (b − bc)L ’ |G|−L. (25)

ZL (23) represents a random surface with two punctures where two con-
formal operators of dimension gL are located (here two vertices of L non-
intersecting RW’s), and in a graphical way scales as

ZL ’ Z[Ì• • ] × |G|−2gL (26)

where the partition function of the two-puncture surface is the second
derivative of Zq=2(b) (22). The latter two equations yield

2gL − cstr(q=2)=L, (27)

where cstr(q=2)=−1/2. We thus get the previously announced result

gL=1
2(L − 1

2). (28)

For the boundary partition function Z̃L (24) a similar analysis can be
performed near the triple critical point where the boundary length also
diverges. The boundary partition function Z̃L corresponds to two boundary
operators of dimensions g̃L, integrated over “G, on a random surface with
the topology of a disc, or in graphical terms:

Z̃L ’ Z(Ì• •) × |“G|−2g̃L. (29)

From the exact calculation of the boundary partition function (24), one gets
the further equivalence to the bulk one:

Z̃L/Z(Ì• •) ’ ZL, (30)

where the equivalences hold true in terms of scaling behavior. Comparing
Eqs. (29), (30), and (25), and using the FSS |“G| ’ |G|1/2 gives

g̃L=L. (31)

Applying the quadratic KPZ relation (18) to gL and g̃L above yields
at once the values in the plane R2, g

(0)
L — zL (Eq. (13)), and g̃

(0)
L — 2z̃L

(Eq. (14)).
Consider now the exponents

z(n1, .., nL)=g
(0){nl},
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as well as

2z̃(n1, .., nL)=g̃
(0){nl},

describing L mutually-avoiding bunches l=1, .., L, each made of nl inde-
pendent walks, i.e., mutually ‘‘transparent,’’ (52) with possible mutual inter-
sections in a bunch. In presence of gravity each bunch will contribute its
own normalized boundary partition function as a factor, and yield a natural
generalization of (30)

Z{nl} ’
Z̃{nl}

Z(Ì• •)
’ D

L

l=1

Z̃(nl)
Z(Ì• •)

, (32)

to be identified with |“G|−2g̃{nl}. The factorization property (32) immediately
implies the additivity of boundary conformal dimensions in presence of
gravity

g̃{n1, .., nL}= C
L

l=1
g̃(nl), (33)

where g̃(n) is now the boundary dimension of a single bunch of n trans-
parent walks on the random surface. We know g̃(n) exactly since it corre-
sponds in the standard plane to a trivial surface conformal dimension
g̃

(0)(n)=n. It thus suffices to invert (18) to get

g̃(n)=U−1(n)=1
4(`24n+1 − 1). (34)

One notes the identification (32), on a random surface, of the bulk parti-
tion function with the ratio of boundary ones, which gives the generaliza-
tion of (27): g̃{n1,..., nL}=2g{n1,..., nL} − cstr (x=2). In the plane, using
once again the KPZ relation (18) for g̃̃{nl} and g{nl} gives the general
results (28)

z(n1, .., nL)=V(x) — 1
24(4x2 − 1), (35)

2z̃(n1, .., nL)=U(x)=1
3 x(1+2x), (36)

x= C
L

l=1
U−1(nl)= C

L

l=1

1
4(`24nl+1 − 1). (37)

Lawler and Werner (31) proved by probabilistic means, using the geometrical
conformal invariance of Brownian motions, the existence of two functions
U and V satisfying the structure (35)–(37). The quantum gravity approach
here explains this structure in terms of linear equation (33), and yields
the explicit functions U(x) and V(x) — U(1

2 (x − 1
2)) of (35) and (36). The
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same expression of these functions has been finally derived in probability
theory. (40)

Let us remark that the above equations yield for z(2, 1 (L)) describing a
two-sided walk and L one-sided walks, all mutually non-intersecting,

z(2, 1 (L))=zL+3
2
=V(L+3

2)=1
6(L+1)(L+2). (38)

For L=1, z(2, 1)=z5/2=1 gives correctly the escape probability of a
RW from another RW. For L=0, z(2, 1 (0))=z3/2=1/3 is related to the
Hausdorff dimension of the frontier by D=2 − 2z. (53) Thus we obtain (28)

D=2 − 2z 3
2
=4

3 , (39)

i.e., Mandelbrot’s conjecture. This conjecture has finally been proven in
probability theory, (41) using the analytic properties of the exponents derived
from the so-called stochastic Löwner equation. (39) The quantum geometric
structure explicited here allows several generalizations, which we now
describe. (29)

3. RANDOM WALKS AND SELF-AVOIDING WALKS

We now generalize the scaling structure obtained in the preceding
section to arbitrary sets of random or self-avoiding walks (29) (see also
refs. 31 and 32). Consider a general star copolymer S in the plane R2 (or
in Z2), made of an arbitrary mixture of Brownian paths or RW’s (set B),
and polymers or SAW’s (set P), all starting at neighboring points. Any
pair (A, B) of such paths, A, B ¥ B or P, can be constrained in a specific
way: either they avoid each other (A 5 B=”, noted A N B), or they are
independent, i.e., ‘‘transparent’’ and can cross each other (noted
A K B). (29, 54) This notation allows any nested interaction structure; (29) one
can decide for instance that the branches {Pa ¥ P}a=1,..., L of an L-star
polymer, all mutually-avoiding, further avoid a bunch of Brownian paths
{Bk ¥ B}k=1,..., n, all transparent to each other:

S=1 L
L

a=1
Pa
2N1 I

n

k=1
Bk
2 . (40)

In 2D the order of the branches of the star copolymer does matter and is
intrinsic to our ( N , K ) notation.

To each specific star copolymer center S is attached a conformal
scaling operator with a scaling dimension x(S). To obtain proper scaling
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we consider the partition functions of Brownian paths and polymers having
the same mean size R. When the star is constrained to stay in a half-plane
with its core placed near the boundary, its partition function will scale with
new boundary scaling dimension x̃(S). (8, 19, 20)

Any scaling dimension x in the bulk is twice the conformal dimension
(c.d.) D (0) of the corresponding operator, while near a boundary (b.c.d.)
they are identical:

x=2D (0), x̃=D̃ (0). (41)

As above, the idea is to use the representation where the RW’s or
SAW’s are on a 2D random lattice, or a random Riemann surface, i.e., in
the presence of 2D quantum gravity. (45) The general relation (18) depends
only on the central charge, and is valid for polymers, for which c=0. Let
us summarize the results, (29) expressed here in terms of the scaling dimen-
sions in the standard plane. For a critical system with central charge c=0,
the two universal functions:

U(x)=1
3 x(1+2x), V(x)= 1

24 (4x2 − 1), (42)

with V(x) — U(1
2 (x − 1

2)), generate all the scaling exponents. The scaling
exponents x(A N B), and x̃(A N B), of two mutually avoiding stars A, B, with
proper scaling exponents x(A), x(B), or boundary exponents x̃(A), x̃(B),
obey the star algebra (28, 29)

x(A N B)=2V[U−1(x̃(A))+U−1(x̃(B))]

x̃(A N B)=U[U−1(x̃(A))+U−1(x̃(B))],
(43)

where U−1(x) is the inverse function of U

U−1(x)=1
4(`24x+1 − 1). (44)

On a random surface, U−1(x̃) is the boundary dimension corresponding to
the value x̃ in R × R+, and the sum of U−1 functions in Eq. (43) represents
linearly the juxtaposition A N B of two sets of random paths near their
random frontier, i.e., the product of two ‘‘boundary operators’’ on the
random surface. The latter sum is mapped by the functions U, V, into the
scaling dimensions in R2. (29)

The rules (43), which mix bulk and boundary exponents, come from
simple factorization properties on a random Riemann surface, i.e., in
quantum gravity, (28, 29) (and are also recurrence relations in R2 between
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conformal Riemann maps of the successive mutually-avoiding paths onto
the line R (ref. 31)).

If, on the contrary, A and B are independent and can overlap, then by
trivial factorization of probabilities their dimensions are additive (29)

x(A K B)=x(A)+x(B),

x̃(A K B)=x̃(A)+x̃(B).
(45)

It is clear at this stage that the set of equations above is complete. It
allows for the calculation of any conformal dimensions associated with a
star structure S of the most general type, as in (40), involving ( N , K )
operations separated by nested parentheses. (29)

Brownian-polymer exponents: The single extremity scaling dimensions
are for a RW or a SAW near a Dirichlet boundary in R2 (20, 55)

x̃B(1)=D̃ (0)
B (1)=1, x̃P(1)=D̃ (0)

P (1)=5
8 , (46)

or on G, D̃B(1)=U−1(1)=1, D̃P(1)=U−1(5
8)=3

4 . Because of the star
algebra described above these are the only numerical seeds, i.e., generators,
we need.

Stars can include bunches of n copies of transparent RW’s or m
transparent SAW’s. Their b.c.d.’s in R2 are respectively, by using (45) and
(46), D̃ (0)

B (n)=n and D̃ (0)
P (m)=5

8 m, from which the inverse mapping to the
random surface yields D̃B(n)=U−1(n) and D̃P(m)=U−1(5

8 m). The star
made of L bunches a ¥ {1,..., L}, each of them made of na transparent
RW’s and of ma transparent SAW’s, and the L bunches being mutually-
avoiding, has planar scaling dimensions

D̃ (0){na, ma}=U(D̃), D (0){na, ma}=V(D̃),

D̃{na, ma}= C
L

a=1
U−1(na+

5
8 ma).

This encompasses all previously known exponents for RW’s and
SAW’s. (8, 19, 20) We in particular arrive at the striking scaling equivalence:
a self-avoiding walk is exactly equivalent to 5/8 of a Brownian motion.
Similar results have been obtained in probability theory, based on the
general structure of ‘‘completely conformally invariant processes,’’ which
correspond exactly to c=0 central charge conformal field theories. (32, 40)

The construction of the scaling limit of SAW still eludes a rigorous
approach, eventhough it is predicted that it corresponds to the ‘‘stochastic
Löwner evolution’’ SLEo with o=8/3, equivalent to a Coulomb gas with
g=4/o=3/2 (see Section 11 below).
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4. CONFORMAL MULTIFRACTALITY AND THE HARMONIC

MEASURE

The harmonic measure, i.e., the diffusion or electrostatic field near
an equipotential fractal boundary, (56) or, equivalently, the electric charge
appearing on the frontier of a perfectly conducting fractal, possesses a self-
similarity property, which is reflected in a multifractal behavior. Cates and
Witten (24) considered the case of the Laplacian diffusion field near a simple
random walk, or near a self-avoiding walk. The associated exponents can
be recast as those of star copolymers made of a bunch of independent
RW’s diffusing away from a generic point of the absorber. The exact solu-
tion to this problem in two dimensions is as follows. (29)

From a mathematical point of view, it can also be derived from the
results of refs. 31, 32, 40, and 41 taken altogether.

The two-dimensional ‘‘absorber’’ S can be a random walk, or a self-
avoiding walk. The harmonic measure H(w) is the probability that another
random walker launched from infinity, first hits the outer ‘‘hull’s frontier’’
or (accessible) frontier F(S) at point w ¥ F(S). A covering of F by balls
B(w, a) of radius a is centered at points w ¥ F/{a} forming a discrete
subset F/{a} of F. Let H(F 5 B(w, a)) be the harmonic measure of the
intersection set between F and the ball B(w, a). The moments of H,
averaged over all realizations of RW’s and S are defined by

Zn=7 C
w ¥ F/{a}

Hn(F 5 B(w, a))8 , (47)

where n can be, a priori, a real number. In the limit of large absorbers S

and frontiers F(S) of average size R, or small covering radius a, i.e,
a/R Q 0, these moments scale as

Zn % (a/R)y(n), (48)

where the multifractal scaling exponents y(n) encode generalized dimen-
sions D(n), y(n)=(n − 1) D(n), which vary in a non-linear way with n. (11–14)

As explained in the introduction, the harmonic multifractal spectrum
f(a) (Eqs. (4)–(6)) is derived as a Legendre transform of the y(n) function.
(The existence of the harmonic multifractal spectrum f(a) for a Brownian
path has been rigorously established in ref. 57.)

By the very definition of the H-measure, n independent RW’s diffus-
ing away from the absorber give a geometric representation of the nth
moment Hn, for n integer, and convexity arguments give the whole contin-
uation to real values. When the absorber is a RW or a SAW of size R, the
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site average of its moments Hn is represented by a copolymer star partition
function ZR(SN n), where we have introduced the short-hand notation
SN n — SN ( K B)n describing the copolymer star made by the absorber S

hit by the bunch ( K B)n at the apex only. (24, 29) More precisely one has

Zn % R2ZR(SN n) (49)

where the absorber S is either the two-RW star B K B or the two-SAW star
P N P, made of two non-intersecting SAW’s. Owing to Eq. (48), we get the
scaling relation

y(n)=x(SN n) − 2. (50)

Our formalism (43) immediately gives the scaling dimensions

x(SN n)=2V(D̃(S)+U−1(n)), (51)

where D̃(S) is as above the quantum gravity boundary dimension of the
absorber S alone. For a RW absorber, we have D̃(B K B)=U−1(2)=3

2 ,
while for a SAW D̃(P N P)=2D̃P(1)=2U−1(5

8)=3
2 . The coincidence of

these two values tells us that in 2D the harmonic multifractal spectra f(a) of
a random walk or a self-avoiding walk are identical. The calculation gives (29)

y(n)=
1
2

(n − 1)+
5
24

(`24n+1 − 5), (52)

a=
dy

dn
(n)=

1
2
+

5
2

1

`24n+1
, (53)

D(n)=
1
2
+

5

`24n+1+5
, n ¥ 5−

1
24

, +.2 , (54)

f(a)=
25
48

13 −
1

2a − 1
2−

a

24
, a ¥ 11

2
, +.2 . (55)

The corresponding universal curves are shown in Figs. 2 and 3: y(n)
is half a parabola, and f(a) a hyperbola. D(1)=y −(1)=1 is Makarov’s
theorem. The singularity at a=1

2 in the multifractal functions f(a) corre-
sponds to points on the fractal boundary F where the latter has the local
geometry of a needle. The mathematical version of this statement is given
by Beurling’s theorem, (58) which states that at distance E from the bound-
ary, the harmonic measure is bounded above by

H(z: inf
w ¥ F

|z − w| [ E)) [ CE1/2, (56)
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1
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τ(
n)

τ(-- 1/24)=-- 25/16

Fig. 2. Harmonic multifractal dimensions y(n) of a two-dimensional RW or SAW.

where C is a constant. This insures that the spectrum of multifractal
Hölder exponents a is bounded below by 1

2 . The right branch of the f(a)
curve has a linear asymptote

lim
a Q +.

1
a

f(a)=−
1
24

. (57)

Its linear shape is quite reminiscent of that of the multifractal function of
the growth probability as in the case of a 2D DLA cluster. (59) The domain
of large values of a corresponds to the lowest part n Q ng=− 1

24 of the
spectrum of dimensions, which is dominated by almost inaccessible sites,
and the existence of a linear asymptote to the multifractal function f
implies a peculiar behavior for the number of those sites in a lattice setting.
Indeed define N(H) as the number of sites having a probability H to be
hit:

N(H)=Card{w ¥ F : H(w)=H}. (58)

Using the MF formalism to change from the variable H to a (at fixed value
of a/R), shows that N(H) obeys, for H Q 0, a power law behavior

N(H)|H Q 0 % H−y
g

(59)

0 5 10 15 20
α

0.0

0.5

1.0

1.5

f(
α)

1/2

f(3)=4/3

Fig. 3. Harmonic multifractal spectrum f(a) of a two-dimensional RW or SAW.

Higher Conformal Multifractality 707



with an exponent

yg=1+ lim
a Q +.

1
a

f(a)=1+ng. (60)

Thus we predict

yg=23
24 . (61)

One remarks that − y(0)=supa f(a)=f(3)=4
3 is the Hausdorff

dimension of the Brownian frontier or of a SAW. Thus Mandelbrot’s clas-
sical conjecture identifying the latter two is derived and generalized to the
whole f(a) harmonic spectrum.

An Invariance Property of f(a)

The expression of f(a) simplifies if one considers the combination:

f(a) − a=
25
24

51 −
1
2
12a − 1+

1
2a − 1

26 . (62)

Thus the multifractal function possesses the invariance symmetry (60)

f(a) − a=f(a −) − a −, (63)

for a and a − satisfying the duality relation:

(2a − 1)(2a − − 1)=1, (64)

or, equivalently

a−1+a − −1=2. (65)

When associating a wedge angle h=p/a to each local singularity exponent a,
one recovers the complementary rule for angles in the plane (60)

h+h −=
p

a
+

p

a −
=2p. (66)

It is interesting to note that, owing to the explicit forms (53) of a and (54)
of D(n), the condition (65) becomes after a little algebra,

D(n)+D(nŒ)=2. (67)
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This basic symmetry (63) reflects that of the cluster boundary itself under
the exchange of interior and exterior domains (ref. 60).

Higher Multifractality of Brownian Motion and Self-Avoiding Walk

It is interesting to note that one can also define higher multifractal
spectra as those depending on several a variables. (35) A first example is
given by the double moments of the harmonic measure on both sides of a
random fractal, taken here as a Brownian motion or a self-avoiding walk.
(The general case will be further described in Section 6.) The fractal
boundary has to be reached from both sides, so it must be a simple curve
without double points, which is naturally the case of a SAW. For a Brow-
nian motion, one can consider the subset of the pinching or cut points, of
Hausdorff dimension D=2 − 2z2=3/4, where the path splits into two non-
intersecting parts. Locally the Brownian path then is accessible from both
directions.

Let us define:

Zn, nŒ=7 C
w ¥ F/{a}

[H+(w)]n [H− (w)]nŒ8 , (68)

where H+(w) — H+(F 5 B(w, a)) and H− (w) — H− (F 5 B(w, a)) are
respectively the harmonic measures on ‘‘left’’ or ‘‘right’’ sides of the
random fractal. These moments have a multifractal scaling behavior

Zn % (a/R)y2(n, nŒ), (69)

where the exponents y2(n, nŒ) now depend on two moment orders n and nŒ.
The generalization of the Legendre transform Eq. (6) reads

a=
“y2

“n
(n, nŒ), aŒ=

“y2

“nŒ
(n, nŒ),

f2(a, aŒ)=an+aŒnŒ − y2(n, nŒ),

n=
“f2

“a
(a, aŒ), nŒ=

“f2

“aŒ
(a, aŒ).

(70)

We find the y exponents from the star algebra (43):

y2(n, nŒ)=2V(aŒ+U−1(n)+U−1(nŒ)) − 2, (71)
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where aŒ corresponds to the quantum gravity boundary scaling dimension
of the fractal set, i.e., the simple curve or the pinching point set, where the
harmonic measure is evaluated on both sides. For a Brownian motion,
pinched into two parts separated by the two sets of auxiliary Brownian
motions, representing the moments of the harmonic mesures, we have:

aŒ=D̃(B N B)=2 × D̃B(1)=2U−1(1)=2. (72)

For a self-avoiding walk made of two mutually-avoiding one-sided arms,
we have

aŒ=D̃(P N P)=2 × D̃P(1)=2U−1(5
8)=3

2 . (73)

After performing the double Legendre transform and some calculations, we
find

f2(a, aŒ)=2+
1
12

−
1
3

aœ
2 51 −

1
2
11

a
+

1
aŒ

26−1

−
1
24

(a+aŒ), (74)

a=2
1

`24n+1
5aœ+

1
4

(`24n+1+`24nŒ+1)6 , (75)

and a similar symmetric equation for aŒ. Here aœ has the shifted value:

aœ=aŒ+c=aŒ − 1
2 (76)

=3
2 (RW), or aœ=1 (SAW). (77)

This doubly multifractal spectrum possesses the requested properties, like
supaŒ f(a, aŒ)=f(a), where f(a) is (55) above.

This can be generalized to a star configuration made of m random
walks or m self-avoiding walks, where one looks at the simultaneous
behavior of the potential in each sector between the arms of the star (see
Section 6 below for a more precise description in the general case). The
poly-multifractal results read for Brownian motions or self-avoiding poly-
mers:

fm({ai=1,..., m})=2+
1
12

−
1
3

aœ
2 11 −

1
2

C
m

i=1
a−1

i
2−1

−
1
24

C
m

i=1
ai, (78)

with

ai=2
1

`24ni+1
1aœ+

1
4

C
m

j=1
`24nj+12 , (79)
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and where

aŒ=m, aœ=aŒ − 1
4 m=3

4 m, (80)

for m random walks in a star configuration, and

aŒ=3
4 m, aœ=aŒ − 1

4 m=1
2 m, (81)

for m self-avoiding walks in a star configuration. The two-sided case (77)
above is recovered for m=2. The domain of definition of the poly-multi-
fractal function f is given by

1 − 1
2 C

m

i=1
a−1

i \ 0, (82)

as verified by Eq. (79).

5. PERCOLATION CLUSTERS

Consider now a very large two-dimensional incipient cluster C, at the
percolation threshold pc. Define H(w) as the probability that a random
walker, launched from infinity, first hits the outer (accessible) percolation
hull’s frontier F(C) at point w ¥ F(C). The moments of H are averaged
over all realizations of RW’s and C, as in Eq. (47) above. For very large
clusters C and frontiers F(C) of average size R, one expects again these
moments to scale as in Eq. (48): Zn % (a/R)y(n). These exponents y(n) have
been obtained recently, (30) using an exact result on the external boundary of
a percolation cluster. (38)

We consider site percolation on the 2D triangular lattice. Figure 4
depicts n independent random walks, in a bunch, first hitting the external
frontier of a percolation cluster at a site w=(•). In order that this site
belongs to the accessible part of the hull, it must remain, in the continuous
scaling limit, the source of at least three non-intersecting crossing paths,
noted S3, reaching to a (large) distance R (Fig. 4). (38) (Notice that the
definition of the standard hull requires only a pair of dual lines). The n
independent RW’s, or Brownian paths B in the scaling limit, in a bunch
denoted ( K B)n, avoid the set S3 — ( NP)3 of three non-intersecting con-
nected paths in the percolation system, and this system is governed by a
new critical exponent x(S3 N n) depending on n.

In terms of these definitions, the harmonic measure moments simply
scale with an exponent (29)

y(n)=x(S3 N n) − 2. (83)

Higher Conformal Multifractality 711



For percolation, two values of half-plane crossing exponents x̃a are known
by elementary means: x̃2=1, x̃3=2. (26) We fuse the two objects S3 and
( K B)n into a new star S3 N ( K B)n, and use (43) to obtain

x(S3 N n)=2V(U−1(x̃3)+U−1(n)). (84)

Specifying U−1(x̃3)=3
2 finally gives from (42), (44)

x(S3 N n)=2+1
2(n − 1)+ 5

24(`24n+1 − 5).

From this y(n) (83) is found to be identical to (52) for RW’s and
SAW’s; D(n) is then:

D(n)=
1
2
+

5

`24n+1+5
, n ¥ 5−

1
24

, +.2 , (85)

valid for all values of moment order n, n \ − 1
24 . The Legendre transform

reads again exactly as in Eq. (55):

f(a)=
25
48

13 −
1

2a − 1
2−

a

24
, a ¥ 11

2
, +.2 . (86)

Only in the case of percolation has the harmonic measure been syste-
matically studied numerically, by Meakin et al. (61) We show in Fig. 5 the
exact curve D(n) (85) (30) together with the numerical results for n ¥

{2,..., 9}, (61) showing fairly good agreement.
The average number N(H) (59) has been also determined numerically

for percolation clusters in ref. 62, and for c=0, our prediction (61)
yg=23

24=0.95833... compares very well with the result yg=0.951 ± 0.030,
obtained for 10−5 [ H [ 10−4.

The dimension of the support of the measure D(0)=4
3 ] DH, where

DH=7
4 is the Hausdorff dimension of the standard hull, i.e., the outer

boundary of critical percolating clusters. (63) The value D(0)=4
3 corresponds

to the dimension of the accessible external perimeter. A direct derivation of
its exact value is given in ref. 38. The complement of the accessible perim-
eter in the hull is made of deep fjords, which do close in the scaling limit and
are not probed by the harmonic measure. This is in agreement with the
instability phenomenon observed on a lattice for the hull dimension. (64)

A striking fact is the complete identity of the multifractal spectrum for
percolation to the corresponding results, Eqs. (52)–(55), both for random
walks and self-avoiding walks. Seen from outside, these three fractal simple
curves are not distinguished by the harmonic measure. In fact they are the
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R

R

R

Fig. 4. An accessible site (N) on the external perimeter for site percolation on the triangular
lattice. It is defined by the existence, in the scaling limit, of three non-intersecting, and con-
nected paths S3 (dotted lines), one on the incipient cluster, the other two on the dual empty
sites. The entrances of fjords n• close in the scaling limit. Point (N) is first reached by three
independent RW’s (red, green, blue), contributing to H3(N). The hull of the incipient cluster
(golden line) avoids the outer frontier of the RW’s (thick blue line).
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n

0.5

1.0

1.5

D
(n
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D(0)=4/3
D(--1/24)=3/2

D(1)=1
D(2)=11/12

n =--1/24*

Fig. 5. Universal generalized dimensions D(n) as a function of n, corresponding to the
harmonic measure near a percolation cluster, or to self-avoiding or random walks, and com-
parison with the numerical data obtained by Meakin et al. (1988) for percolation.
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same, and one of the main conclusions of this study is that the external
frontiers of a planar Brownian motion, or of a critical percolation cluster are
identical to a critical self-avoiding walk, with a Hausdorff dimension D=4

3 .
As we have seen, this fact is linked to the presence of a single universal
conformal field theory (with a vanishing central charge c=0), and to the
underlying presence of quantum gravity, which organizes the associated
conformal dimensions. Note that in a recent work, Smirnov (42) proved that
critical site percolation on the triangular lattice has a conformally invariant
scaling limit, and that the discrete cluster interfaces (hulls) converge to the
same stochastic Löwner evolution process as the one involved for Brow-
nian paths, opening the way to a rigorous derivation of percolation expo-
nents, (43, 44) previously derived in physics. (17, 55, 63, 38)

6. GENERAL CONFORMALLY SCALING CURVES AND HIGHER

MULTIFRACTALITY

In the next sections, we present the main description of multifractal
functions results in a universal way. For multiple simple curves, we also
define the higher multifractal spectra, depending on an arbitrary number of
a-variables. We then proceed with their derivation from conformal field
theory and quantum gravity. The geometrical findings are described in
details, including well-known cases (Ising clusters, Q=4 Potts model).
Finally, some geometric duality properties for the external boundaries in
O(N) and Potts models are explained. We also make explicit the relation
between a conformally invariant scaling curve with CFT central charge c, (34)

and the stochastic Löwner process SLEo. (39–41)

Consider a single (conformally invariant) critical random cluster,
generically called C. Let H(z) be the potential at exterior point z ¥ C, with
Dirichlet boundary conditions H(w ¥ “C)=0 on the outer (simply con-
nected) boundary “C of C, (or frontier F — “C) , and H(w)=1 on a circle
‘‘at .,’’ i.e., of a large radius scaling like the average size R of C. From a
well-known theorem due to Kakutani, (65) H(z) is identical to the harmonic
measure, i.e, the probability that a random walker (more precisely,
a Brownian motion) launched from z, escapes to . without having hit C.
The multifractal formalism (11–14) characterizes subsets “Ca of boundary sites
by a Hölder exponent a, and a Hausdorff dimension f(a)=dim(“Ca), such
that their potential locally scales as

H(z Q w ¥ “Ca) % (|z − w|/R)a, (87)

in the scaling limit a ° r=|z − w| ° R, with a the underlying lattice
constant. In 2D the complex potential j(z) (such that the electrostatic
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potential H(z)=Ij(z) and field |E(z)|=|jŒ(z)|) reads for a wedge of
angle h, centered at w:

j(z)=(z − w)p/h. (88)

By Eq. (87) a Hölder exponent a thus defines a local equivalent ‘‘electro-
static’’ angle h=p/a, and the MF dimension f̂(h) of the boundary subset
with such h is

f̂(h)=f(a=p/h). (89)

Of special interest are the moments of H, averaged over all realizations
of C, and defined in a formal way as

Zn=7 C
z ¥ “C(r)

Hn(z)8 , (90)

where points z ¥ “C(r) form a discrete set shifted a distance r outwards
from “C, and where n can be a real number. In the scaling limit, one
expects these moments to scale as

Zn % (r/R)y(n), (91)

where the multifractal scaling exponents y(n) vary in a non-linear way with
n; (11–14) they obey the symmetric Legendre transform y(n)+f(a)=an, with
n=fŒ(a), a=yŒ(n). From Gauss’s theorem (24) y(1)=0. As noted above,
because of the ensemble average (90), values of f(a) can become negative
for some domains of a. (22, 24)

Now, we consider the specific case where the fractal set C is a (con-
formally invariant) simple scaling curve, that is, it does not contain double
points. The frontier “C is thus identical with the set itself:

“C=C. (92)

Each point of the curve can then be reached from infinity, and we can
address the more refined question of the simultaneous behavior of the
potential on both sides of the curve. Specifically, the potential H scales as

H+(z Q w+ ¥ “Ca, aŒ) % |z − w|a, (93)
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when approaching w on one side of the scaling curve, together with the
scaling

H− (z Q w− ¥ “Ca, aŒ) % |z − w|aŒ, (94)

on the other side. We can then generalize the multifractal formalism to
characterize subsets Ca, aŒ of boundary sites w by two Hölder exponents a, aŒ

such that the potential near w locally scales on the two sides of C as in
Eqs. (93) and (94). This subset is characterized by a Hausdorff dimension
f2(a, aŒ)=dim(Ca, aŒ). The standard multifractal spectrum f(a) is then
recovered as the supremum:

f(a)=sup
aŒ

f2(a, aŒ). (95)

As above, one can also define two equivalent ‘‘electrostatic’’ angles from
the Hölder exponents a, aŒ, as h=p/a, hŒ=p/aŒ and the MF dimension
f̂2(h, hŒ) of the boundary subset with such h, hŒ is then

f̂2(h, hŒ)=f2(a=p/h, aŒ=p/hŒ). (96)

Define the harmonic measure H(w) as the probability that a random
walker, launched from infinity, first hits the frontier C at point w ¥ C. A
covering of C by balls B(w, r) of radius r is centered at points w ¥ C/{r},
forming a discrete subset C/{r} of C. Let H(C 5 B(w, r)) be the harmonic
measure of the intersection of C and the ball B(w, r). The double multi-
fractal spectrum will be computed from the double moments of the har-
monic measure on both sides of the random fractal curve. Let us define:

Zn, nŒ=7 C
w ¥ C/{r}

[H+(w)]n [H− (w)]nŒ8 , (97)

where H+(w) — H+(C 5 B(w, r)) and H− (w) — H− (C 5 B(w, r)) are
respectively the harmonic measures on the ‘‘left’’ or ‘‘right’’ sides of the
random fractal. These double moments have a multifractal scaling behavior

Zn, nŒ % (r/R)y2(n, nŒ), (98)

where the exponent y2(n, nŒ) now depends on two moment orders n, nŒ. The
generalization of the usual Legendre transform of multifractal formalism
Eq. (6) reads
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a=
“y2

“n
(n, nŒ), aŒ=

“y2

“nŒ
(n, nŒ),

f2(a, aŒ)=an+aŒnŒ − y2(n, nŒ),

n=
“f2

“a
(a, aŒ), nŒ=

“f2

“aŒ
(a, aŒ).

(99)

From definition (97) and Eq. (98), we recover the one-sided multifractal
spectrum,

y(n)=y2(n, nŒ=0). (100)

Putting the value nŒ=0 in the Legendre transform Eq. (99), we obtain the
identity (95), as we must.

More generally, one can consider a star configuration Sm of a number
m, m \ 2, of similar simple scaling paths, all originating at the same vertex w.
The higher moments Zn1, n2,..., nm

can then be defined as

Zn1, n2,..., nm
=7 C

w ¥ Sm

[H1(w)]n1 [H2(w)]n2 · · · [Hm(w)]nm8 , (101)

where

Hi(w) — Hi(C 5 B(w, r))

is the harmonic measure (or, equivalently, local potential at distance r) in
the ith sector of radius located between paths i and i+1, with i=1,..., m,
and by periodicity m+1 — 1. These higher moments have a multifractal
scaling behavior

Zn1, n2,..., nm
% (r/R)ym(n1, n2,..., nm), (102)

where the exponent ym(n1, n2,..., nm) now depends on the set of moment
orders n1, n2,..., nm. The generalization of the usual Legendre transform of
multifractal formalism Eq. (6) now involves a higher multifractal function
fm(a1, a2,..., am), depending on m local exponents ai:

ai=
“ym

“ni
({ni}),

fm({ai})= C
m

i=1
aini − ym({ni}),

ni=
“fm

“ai
({aj}).

(103)
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At this point, a caveat is in order. The reader may wonder about the
meaning of the sum over point w in (101), if there is only one such m-vertex
in a star! This formal notation is kept for consistency with the m=2 case,
and is meant to indicate that exponents ym(n1, n2,..., nm) are calculated with
inclusion of the Hausdorff dimension Dm, associated with the star center; in
these notations Dm=−ym(0, 0,..., 0)=sup{ai} fm({ai}), and it becomes
negative for m high enough (see Section 8 below). One can define shifted
exponents ỹm — ym+Dm=ym(n1, n2,..., nm) − ym(0, 0,..., 0), which corre-
spond to a different normalization, and describe the scaling of local
averages

O[H1(w)]n1 [H2(w)]n2 · · · [Hm(w)]nmP % (r/R) ỹm(n1, n2,..., nm). (104)

By Legendre transform (103) these exponents give the subtracted spectrum
fm({ai}) − sup{ai} fm({ai}) directly. The latter has an immediate physical
meaning: the probability P({ai}) to find a set of local singularity exponents
{ai} in the m sectors of an m-arm star scales as:

Pm({ai}) 3 Rfm({ai})/R sup fm. (105)

From definition (101) and Eq. (102), we get the lower (m − 1)-
multifractal spectrum as

y[m − 1]
m (n1, n2,..., nm − 1)=ym(n1, n2,..., nm − 1, nm=0). (106)

In these exponents, the subscript m stays unchanged since it counts the
number of arms of the star, while the potential is evaluated only at m − 1
sectors among the m possible ones. More generally, one can define expo-
nents

y[p]
m (n1, n2,..., np)=ym(n1, n2,..., np; np+1=0,..., nm=0),

where p takes any value in 1 [ p [ m. Note that according to the commu-
tativity of the star algebra for exponents between mutually-avoiding paths
(see Eq. (43) and below), the result does not depend on the choice of the
p sectors among m. Putting the value nm=0 in the Legendre transform
Eq. (103), we obtain the identity:

f[m − 1]
m (a1,..., am − 1)=sup

am

fm(a1, a2,..., am). (107)

Note that the usual f(a) spectrum is in these notations f[1]
2 (a).
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7. CONFORMAL INVARIANCE AND QUANTUM GRAVITY

Let us now follow the main lines of the derivation of exponents y(n),
hence f(a), or, more generally, ym(n1, n2,..., nm) and fm(a1, a2,..., am) via
generalized conformal invariance. By definition of the H-measure, n inde-
pendent RW’s, or Brownian paths B in the scaling limit, starting at the
same point a distance r away from the cluster’s hull’s frontier “C, and dif-
fusing without hitting “C, give a geometric representation of the nth
moment, Hn, in Eq. (47) for n integer. Convexity yields analytic continua-
tion for arbitrary n’s. Let us recall the notation A N B for two random sets
conditioned to traverse, without mutual intersection, the annulus D(r, R)
from the inner boundary circle of radius r to the outer one at distance R,
and A K B for two independent, thus possibly intersecting, sets. (29) With this
notation, the ‘‘probability’’ (actually the associated grand canonical parti-
tion function) that the Brownian paths and cluster are in a configuration
“CN ( KB)n — “CN n, is expected to scale for R/r Q . as

PR(“CN n) % (r/R)x(n), (108)

where the scaling exponent x(n) depends on n. In terms of definition (108),
the harmonic measure moments (90) simply scale as Zn % R2PR(“CN n), (24, 29)

which, combined with Eq. (48), leads to

y(n)=x(n) − 2. (109)

To calculate these exponents, we use the fundamental mapping of
the conformal field theory in the plane R2, describing a critical statistical
system, to the CFT on a fluctuating abstract random Riemann surface, i.e.,
in presence of quantum gravity. (45, 50, 49) Two universal functions U, and V,
which now depend on the central charge c of the CFT, describe this map:

U(x)=x
x − c

1 − c
, V(x)=

1
4

x2 − c2

1 − c
, (110)

with

V(x) — U(1
2(x+c)). (111)

The parameter c is the string susceptibility exponent of the random 2D
surface (of genus zero), bearing the CFT of central charge c; (45) c is the
solution of

c=1 − 6c2(1 − c)−1, c [ 0. (112)
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For two arbitrary random sets A, B, with boundary scaling exponents in
the half-plane x̃(A), x̃(B), the scaling exponent x(A N B), as in (108), has
the universal structure (29, 30, 34)

x(A N B)=2V[U−1(x̃(A))+U−1(x̃(B))], (113)

where U−1(x) is the positive inverse function of U

U−1(x)=1
2(`4(1 − c) x+c2+c). (114)

Note that one has the shift relation

U−1(x)=1
2 V−1(x)+1

2 c, (115)

where

V−1(x)=`4(1 − c) x+c2 . (116)

U−1(x̃) is, on the random Riemann surface, the boundary scaling dimen-
sion corresponding to x̃ in the half-plane R × R+, and the sum of U−1

functions in Eq. (113) is a linear representation of the product of two
‘‘boundary operators’’ on the random surface, as the condition A N B for
two mutually-avoiding sets is purely topological there. The sum is mapped
back by the function V into the scaling dimensions in R2. (34)

For the harmonic exponents x(n) — x(“CN n) in (108), we use (113).
The external boundary exponent x̃(“C) obeys

U−1(x̃)=1 − c, (117)

which we derive either directly, or from Makarov’s theorem:

yŒ(n=1)=
dx
dn

(n=1)=1. (118)

The bunch of n independent Brownian paths has simply x̃(( KB)n)=n,
since x̃(B)=1. (29) Thus we obtain

x(n)=2V(1 − c+U−1(n)). (119)

This finally gives from (110) (114) for y(n)=x(n) − 2: (34)

y(n)=
1
2

(n − 1)+
1
4

2 − c

1 − c
[`4(1 − c) n+c2 − (2 − c)]. (120)

720 Duplantier



Similar exponents associated with moments later appeared in the context of
the SLE process (see II in ref. 40; see also ref. 66 for Laplacian random
walks).

The Legendre transform is easily performed to yield:

a=
dy

dn
(n)=

1
2
+

1
2

2 − c

`4(1 − c) n+c2
; (121)

f(a)=
1
8

(2 − c)2

1 − c
13 −

1
2a − 1

2−
1
4

c2

1 − c
a, a ¥ 11

2
, +.2 . (122)

Using the identities in terms of central charge c:

1
4

(2 − c)2

1 − c
=

25 − c
24

1
4

c2

1 − c
=

1 − c
24

,

(123)

we find

y(n)=
1
2

(n − 1)+
25 − c

24
1=24n+1 − c

25 − c
− 12 n ¥ 5ng=−

1 − c
24

, +.2 .

a=
dy

dn
(n)=

1
2
+

1
2
= 25 − c

24n+1 − c
; (124)

f(a)=
25 − c

48
13 −

1
2a − 1

2−
1 − c
24

a, a ¥ 11
2

, +.2 . (125)

This formalism immediately allows generalizations. For instance, in place
of n random walks, one can consider a set of n independent self-avoiding
walks P, which avoid the cluster fractal boundary, except for their common
anchoring point. The associated multifractal exponents x(“CN ( KP)n)
are given by (119), with the argument n in U−1(n) simply replaced by
x̃(( KP)n)=nx̃(P)=5

8 n. (29) These exponents govern the universal multi-
fractal behavior of the moments of the probability that a SAW escapes
from C. One then gets a spectrum f̄ such that f̄(ā=x̃(P) p/h)=
f(a=p/h)=f̂(h), thus unveiling the same invariant underlying wedge
distribution as the harmonic measure, (see also ref. 33).
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8. HIGHER MULTIFRACTAL SPECTRA

In analogy to Eqs. (109), (119), the exponent y2(n, nŒ) is associated
with a scaling dimension x2(n, nŒ) by

y2(n, nŒ)=x2(n, nŒ) − 2

x2(n, nŒ)=2V[1 − c+U−1(n)+U−1(nŒ)].
(126)

The calculation of the double Legendre transform Eq. (99) is as
follows. We start with the notation for the total quantum gravity scaling
dimension:

d — 1 − c+U−1(n)+U−1(nŒ). (127)

This gives explicitly:

d=1+1
2 `4(1 − c) n+c2+1

2 `4(1 − c) nŒ+c2. (128)

Then, we have

a=
“x2

“n
(n, nŒ)=2VŒ(d)

“d

“n
(129)

and since

VŒ(x)=
1
2

x
1 − c

,

we finally get

a=
d

`4(1 − c) n+c2
, aŒ=

d

`4(1 − c) nŒ+c2
. (130)

A useful consequence is the identity

d=51 −
1
2
11

a
+

1
aŒ

26−1

. (131)

Equation (130) can be inverted into

n=
1

4(1 − c)
1d2

a2 − c22=V 1d

a
2 , (132)
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where use was made of (110) for V. This allows the simple expression of f2

f2(a, aŒ)=2 − V(d)+aV 1d

a
2+aŒV 1 d

aŒ

2 . (133)

Reordering the d terms with use of (110), and recalling identity (131) for d,
finally gives after some calculations the explicit formulae

f2(a, aŒ)=
25 − c

12
−

1
2(1 − c)

51 −
1
2
11

a
+

1
aŒ

26−1

−
1 − c
24

(a+aŒ), (134)

a=
1

`4(1 − c) n+c2
51+

1
2

(`4(1 − c) n+c2+`4(1 − c) nŒ+c2)6 ,

(135)

where the central charge c and the parameter c are related by Eqs. (123).
This doubly multifractal spectrum possesses the desired properties, like
supaŒ f2(a, aŒ)=f(a), where f(a) is (122) above.

This double multifractality can be generalized to higher ones by con-
sidering star configurations made of m simple scaling paths all originating
at the same vertex, as in (101), with the following poly-multifractal results.
The m-order case will be given by

ym(n1, n2,..., nm)=xm(n1, n2,..., nm) − 2

xm(n1, n2,..., nm)=2V[D̃m+U−1(n1)+U−1(n2)+ · · · +U−1(nm)].

Here D̃m is the quantum gravity boundary scaling dimension of the m-star
Sm made of m (simple) scaling paths. According to the star algebra we
have:

D̃m=m U−1(x̃1)=
m
2

U−1(x̃2)=m
1 − c

2
, (136)

whre x̃2 — x̃ is the boundary scaling dimension of a scaling path, i.e.,
a 2-star, already considered in Eq. (117), and such that U−1(x̃)=1 − c. We
therefore arrive at a total (boundary) quantum scaling dimension

dm=m
1 − c

2
+ C

m

i=1
U−1(ni), (137)

such that

xm(n1, n2,..., nm)=2V(dm). (138)
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Using the shift identity (see (115))

U−1(n)=
c

2
+

1
2

V−1(n),

where we recall that

V−1(n)=`4(1 − c) n+c2 ,

we also have

dm=
m
2

+
1
2

C
m

i=1
V−1(ni). (139)

The multiple Legendre transform (103) is performed as above for the case
m=2. We have

ai=
“xm

“ni
({nj})=2VŒ(dm)

“dm

“ni
=VŒ(dm) [V−1(ni)]Œ, (140)

so we get

ai=
dm

`4(1 − c) ni+c2
=

dm

V−1(ni)
, (141)

or, equivalently

V−1(ni)=
dm

ai
, (142)

inverted into

ni=V 1dm

ai

2 . (143)

One gets from Eqs. (139) and (142)

dm=11 −
1
2

C
m

i=1
ai

−12−1

. (144)

This allows the simple expression of fm

fm({ai})=2 − V(dm)+ C
m

i=1
aiV 1dm

ai

2 . (145)
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Reordering the dm terms with use of (110), and recalling identity (144)
for dm, finally gives after some calculations the explicit formulae

fm({ai=1,..., m})=2+
c2

2(1 − c)
−

1
8(1 − c)

m2 11 −
1
2

C
m

i=1
a−1

i
2−1

−
c2

4(1 − c)
C
m

i=1
ai,

(146)

with

ai=
1

`4(1 − c) ni+c2
1m

2
+

1
2

C
m

j=1
`4(1 − c) nj+c22 . (147)

Substituting expressions (123) gives in terms of c

fm({ai=1,..., m})=
25 − c

12
−

1
8(1 − c)

m2 11 −
1
2

C
m

i=1
a−1

i
2−1

−
1 − c
24

C
m

i=1
ai. (148)

The domain of definition of the poly-multifractal function f is independent
of c and given by

1 −
1
2

C
m

i=1
a−1

i \ 0, (149)

as verified by Eq. (147). The two-sided case (134) above is recovered for
m=2, while the self-avoiding walk case (78) is recovered for c=−1/2,
c=0. Notice that the case fm=1(a1) corresponds to the potential in the
vicinity of the tip of a conformally invariant scaling path, and differs from
the usual f(a)=supaŒ f2(a, aŒ)) spectrum, which describes the potential on
one side of the scaling path.

We can also substitute equivalent ‘‘electrostatic’’ angles hi=p/ai for
the variables ai. This gives a new distribution:

f̂m({hi=1,..., m}) — fm({ai=1,..., m})

=2+
c2

2(1−c)
−

c2

4(1−c)
C
m

i=1

p

hi
−

1
8(1−c)

m2 11−
1

2p
C
m

i=1
hi
2−1

.

(150)

The domain of definition of distribution f̂m is the image of domain (149) in
h-variables:

C
m

i=1
hi [ 2p. (151)
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The total electrostatic angle is thus less than 2p, which simply accounts for
the electrostatic screening of local wedges by fractal randomness, as
expected.

The maximum of fm or f̂m is by construction obtained for ni=0,
-i=1,..., m. Equation (147) gives the values of singularity exponents âi at
the maximum of fm:

âi=
p

ĥi

=
m
2
11 −

1
c
2−1

, -i=1,..., m, (152)

corresponding to a maximum value of fm or f̂m:

sup fm=fm({âi=1,..., m})=f̂m({ĥi=1,..., m})=2 − 2V(D̃m)

=2+
c2

2(1 − c)
−

1
8(1 − c)

m2.

The interpretation of the poly-multifractal spectrum can be understood as
follows. The probability P({ai}) — P̂({hi}) to find a set of local singularity
exponents {ai} or equivalent angles {hi} in the m sectors of an m-arm star
is given by the ratio

Pm({ai}) 3 Rfm({ai})/R sup fm (153)

of the respective number of configurations to the total one. We therefore
arrive at a probability, here written in terms of the equivalent electrostatic
angles:

P̂m({hi}) 3 R f̂m({hi}) − f̂m({ĥi}), (154)

f̂m({hi}) − f̂m({ĥi})= −
1

8(1 − c)
m2 1 2p

;m
i=1 hi

− 12
−1

−
c2

4(1 − c)
C
m

i=1

p

hi
.

(155)

For a large scaling star, the dominant set of singularity exponents {âi}, or
wedge angles {ĥi}, is thus given by the symmetric set of values (152).

9. ANALYSIS OF MULTIFRACTAL DIMENSIONS AND SPECTRA

Let us collect the results for the one-sided functions y(n), D(n), and
f(a). Each conformally invariant random system is labelled by its central
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charge c, c [ 1. The multifractal exponents y(n) and generalized dimensions
D(n) of a simply connected CI boundary are then:

y(n)=
1
2

(n − 1)+
25 − c

24
1=24n+1 − c

25 − c
− 12 , (156)

D(n)=
y(n)
n − 1

=
1
2
+1=24n+1 − c

25 − c
+12

−1

, n ¥ 5ng=−
1 − c
24

, +.2 ;

(157)

after a Legendre transform:

a=
dy

dn
(n)=

1
2
+

1
2
= 25 − c

24n+1 − c
; (158)

f(a)=
25 − c

48
13 −

1
2a − 1

2−
1 − c
24

a, a ¥ 11
2

, +.2 . (159)

It is interesting to note that the general multifractal function (159) posses-
ses the invariance property (63), since it can also be written as

f(a) − a=
25 − c

24
51 −

1
2
12a − 1+

1
2a − 1

26 . (160)

Notice that the generalized dimensions D(n) satisfy, for any c,
yŒ(n=1)=D(n=1)=1, or equivalently f(a=1)=1, i.e., Makarov’s
theorem, (36) valid for any simply connected boundary curve. From (157),
(158) we also remark a fundamental relation, independent of c:

3 − 2D(n)=1/a=h/p. (161)

We also have the superuniversal bounds: -c, -n, 1
2=D(.) [ D(n) [ D(ng)

=3
2 , hence 0 [ h [ 2p. We arrive at the geometrical multifractal distribution

of wedges h along the boundary:

f̂(h)=f 1p

h
2=

p

h
−

25 − c
12

(p − h)2

h(2p − h)
. (162)

Remarkably enough, the second term also describes the contribution by a
wedge to the density of electromagnetic modes in a cavity. (66) The simple
shift in (162), 25 Q 25 − c, from the c=0 case to general values of c can
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then be related to results of conformal invariance in a wedge. (67) The parti-
tion function for the two sides of a wedge of angle h and size R, in a CFT
of central charge c, indeed scales as (68)

Ẑ(h) % R−c(p − h)2/12 h(2p − h). (163)

Thus, one can view the c dependance of result (162) as a renormalization of
the number of sites with wedge angle h along a self-avoiding scaling curve
by a partition factor [Ẑ(h)]−1, representing the presence of a c-CFT along
such wedges.

The maximum of f(a) corresponds to n=0, and gives the dimension
DEP of the support of the measure, i.e., the accessible or external perimeter
as:

DEP=sup
a

f(a)=f(a(n=0)) (164)

=D(0)=
3 − 2c

2(1 − c)
=

3
2

−
1
24

`1 − c (`25 − c − `1 − c). (165)

This corresponds to a typical exponent

â=a(0)=1 −
1
c
=1 1

12
`1 − c (`25 − c − `1 − c)2

−1

=(3 − 2DEP)−1.
(166)

This corresponds to a typical wedge angle

ĥ=p/â=p(3 − 2DEP). (167)

In analogy to the probability (153) for multiple angles, the probability P(a)
to find a singularity exponent a or, equivalently, P̂(h) to find an equivalent
opening angle h along the frontier is

P(a)=P̂(h) 3 Rf(a) − f(â). (168)

Using the values found above, this probability can be recast as (see also
ref. 33)

P(a)=P̂(h) 3 exp 5−
1
24

ln R 1`1 − c `w −
`25 − c

2 `w
226 , (169)

where

w=a −
1
2
=

p

h
−

1
2

.
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The multifractal functions f(a) − a=f̂(h) − p

h
are invariant when taken

upon the substitution of primed variables given by

2p=h+h −=
p

a
+

p

a −
, (170)

this corresponds to the complementary domain of the wedge h. This con-
dition reads also D(n)+D(nŒ)=2. This basic symmetry, first observed and
studied in ref. 60 for the c=0 result of ref. 29, is valid for any conformally
invariant boundary.

The multifractal exponents y(n) (Fig. 6) or generalized dimensions
D(n) (Fig. 7) appear as quite similar for various values of c, and a numeri-
cal simulation would hardly distinguish the different universality classes,
while the f(a) functions, as we shall see, do distinguish these classes, espe-
cially for negative n, i.e., large a. In Fig. 8 are displayed the multifractal
functions f, Eq. (159), corresponding to various values of − 2 [ c [ 1, or,
equivalently, to a number of components N ¥ [0, 2], and Q ¥ [0, 4] in the
O(N) or Potts models (see below).

The singularity at a=1
2 , or h=2p, in the multifractal functions f,

or f̂, corresponds to boundary points with a needle local geometry, and
Beurling’s theorem (58) indeed insures the Hölder exponents a to be bounded
below by 1

2 . This corresponds to large values of n, where, asymptotically,
for any universality class,

-c, lim
n Q .

D(n)=1
2 . (171)

The right branch of f(a) has a linear asymptote

lim
a Q .

f(a)/a=ng=−(1 − c)/24. (172)

The limit multifractal spectrum is obtained for c=1, which exhibits
an exact example of a left-sided MF spectrum, with an asymptote
f(a Q ., c=1) Q 3

2 (Fig. 8). It corresponds to singular boundaries where
f̂(h Q 0, c=1)=3

2=DEP, i.e., where the external perimeter is everywhere
dominated by ‘‘fjords,’’ with typical angle ĥ=0. It is tempting to call it the
‘‘Ultimate Norway.’’

The a Q . behavior corresponds to moments of lowest order n Q ng,
where D(n) reaches its maximal value: -c, D(ng)=3

2 , common to all simply
connected, conformally invariant, boundaries. This describes almost inac-
cessible sites: define N(H) as the number of boundary sites having a given
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τ(
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τ’(1)=1

Fig. 6. Universal multifractal exponents y(n). The curves are indexed by the central charge c,
and correspond to the same colors as in Fig. 8 below: (black: 2D spanning trees (c=−2);
green: self-avoiding or random walks, and percolation (c=0); blue: Ising clusters or Q=2
Potts clusters (c=1

2); red: N=2 loops, or Q=4 Potts clusters (c=1). The curves are almost
indistinguishable at the scale shown.
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D
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Fig. 7. Universal generalized dimensions D(n). The curves are indexed by the same colors as
in Fig. 8 below but are almost indistinguishable at the scale shown.
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Fig. 8. Universal harmonic multifractal spectra f(a). The curves are indexed by the central
charge c, and correspond respectively to: 2D spanning trees (c=−2); self-avoiding or random
walks, and percolation (c=0); Ising clusters or Q=2 Potts clusters (c=1

2); N=2 loops, or
Q=4 Potts clusters (c=1). The maximal dimensions are those of the accessible frontiers.
The left branches of the various f(a) curves are largely indistinguishable, while their right
branches split for large a, corresponding to negative values of n.
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probability H to be hit by a RW starting at infinity; the MF formalism
yields, for H Q 0, a power law behavior

N(H)|H Q 0 % H−(1+ng) (173)

with an exponent

1+ng=
23+c

24
< 1. (174)

Some particular cases are worth considering. An Ising cluster possesses
a multifractal spectrum with respect to the harmonic measure (c=1

2):

y(n)=
1
2

(n − 1)+
7
48

(`48n+1 − 7), (175)

f(a)=
49
96

13 −
1

2a − 1
2−

a

48
, a ¥ 11

2
, +.2 , (176)

with a dimension of the accessible perimeter

DEP=sup
a

f(a, c=1
2)=11

8 . (177)

The Q=4 Potts model provides an interesting example of a left-handed
multifractal spectrum (c=1)

y(n)=
1
2

(n − 1)+`n − 1, (178)

f(a)=
1
2
13 −

1
2a − 1

2 , a ¥ 11
2

, +.2 , (179)

with accessible sites forming a set of Hausdorff dimenson

DEP=sup
a

f(a, c=1)=3
2 , (180)

which is also the maximal value common to all multifractal generalized
dimensions D(n)= 1

n − 1 y(n). Notice that the external perimeter which bears
the electrostatic charge is a simple curve, i.e., a curve without double
points, a self-avoiding or simple path. We therefore arrive at the striking
conclusion that in the plane, a conformally invariant scaling curve which is
self-avoiding has a Hausdorff dimension at most equal to DEP=3/2. (34)
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The corresponding Q=4 Potts frontier, while still possessing a set of
double points of dimension 0, actually develops a logarithmically growing
number of double points. (69)

10. GEOMETRIC DUALITY IN O(N) AND POTTS CLUSTER

FRONTIERS

The O(N) model partition function is that of a gas G of self- and
mutually-avoiding loops on a given lattice, e.g., the hexagonal lattice (18):
ZO(N)=;G KNBNNP, with K and N two fugacities, associated respectively
with the total number of occupied bonds NB, and with the total number
NP of loops, i.e., polygons drawn on the lattice. For N ¥ [ − 2, 2], this
model possesses a critical point (CP), Kc, while the whole ‘‘low-tempera-
ture’’ (low-T ) phase, i.e., Kc < K, has critical universal properties, where
the loops are denser that those at the critical point. (18)

The partition function of the Q-state Potts model on, e.g., the square
lattice, with a second order critical point for Q ¥ [0, 4], has a Fortuin–
Kasteleyn representation at the CP: ZPotts=; 2 (C) Q

1
2 NP, where the con-

figurations 2 (C) are those of unions of clusters on the square lattice, with
a total number NP of polygons encircling all clusters, and filling the medial
square lattice of the original lattice. (18, 17) Thus the critical Potts model
becomes a dense loop model, with loop fugacity N=Q

1
2, while one can

show that its tricritical point with site dilution corresponds to the O(N)
CP. (70) The O(N) and Potts models thus possess the same ‘‘Coulomb gas’’
representations (18, 17, 70):

N=`Q=−2 cos pg, (181)

with g ¥ [1, 3
2] for the O(N) CP, and g ¥ [1

2 , 1] for the low-T O(N), or
critical Potts, models; the coupling constant g of the Coulomb gas also
yields the central charge:

c=1 − 6(1 − g)2/g. (182)

Notice that from the expression (112) of c in terms of c [ 0 one arrives
at the simple relation:

c=1 − g, g \ 1; c=1 − 1/g, g [ 1. (183)

The above representation for N=`Q ¥ [0, 2] gives a range of values
− 2 [ c [ 1; our results also apply for c ¥ (−., −2], corresponding, e.g., to
the O(N ¥ [ − 2, 0]) branch, with a low-T phase for g ¥ [0, 1

2], and a CP for
g ¥ [3

2 , 2].
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The fractal dimension DEP of the accessible perimeter, Eq. (165), is,
once rewritten in terms of g, and like c(g)=c(g−1), a symmetric function
of g and g−1

DEP=1+1
2 g−1J(1 − g−1)+1

2 gJ(1 − g), (184)

where J is the Heaviside distribution, thus given by two different analytic
expressions on either side of the separatrix g=1. The dimension of the
hull’s frontier, i.e., the complete set of outer boundary sites of a cluster, has
been determined for O(N) and Potts clusters, (63) and reads

DH=1+1
2 g−1, (185)

for the entire range of the coupling constant g ¥ [1
2 , 2]. Comparing to

Eq. (184), we therefore see that the accessible perimeter and hull dimen-
sions coincide for g \ 1, i.e., at the O(N) CP (or for tricritical Potts
clusters), whereas they differ, namely DEP < DH, for g < 1, i.e., in the O(N)
low-T phase, or for critical Potts clusters. This is the generalization to any
Potts model of the effect originally found in percolation. (64) This can be
directly understood in terms of the singly connecting sites (or bonds) where
fjords close in the scaling limit. Their dimension is given by (63)

DSC=1+1
2 g−1 − 3

2 g. (186)

Thus, for critical O(N) loops, g ¥ (1, 2] and DSC < 0, so there exist no
closing fjords, which explains the identity:

DEP=DH; (187)

whereas DSC > 0, g ¥ [1
2 , 1) for critical Potts clusters, or in the O(N) low-T

phase, where pinching points of positive dimension appear in the scaling
limit, so that DEP < DH (Table I). We then find from Eq. (184), with g [ 1:

(DEP − 1)(DH − 1)=1
4 . (188)

The symmetry point DEP=DH=3
2 corresponds to g=1, N=2, or Q=4,

where, as expected, the dimension DSC=0 of the pinching points vanishes.
For percolation, described either by Q=1, or by the low-T O(N=1)

model, with g=2
3 , we recover the result DEP=4

3 , recently derived in ref. 38.
For the Ising model, described either by Q=2, g=3

4 , or by the O(N=1)
CP, gŒ=g−1=4

3 , we observe that the EP dimension DEP=11
8 coincides, as

expected, with that of the critical O(N=1) loops, which in fact appear
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Table I. Dimensions for the Critical Q-State Potts Model;

Q=0, 1, 2 Correspond to Spanning Trees,

Percolation and Ising Clusters, Respectively

Q 0 1 2 3 4

c −2 0 1/2 4/5 1
DEP 5/4 4/3 11/8 17/12 3/2
DH 2 7/4 5/3 8/5 3/2
DSC 5/4 3/4 13/24 7/20 0

as EP’s. This is a particular case of a further duality relation between the
critical Potts and CP O(N) models:

DEP(Q(g))=DH[O(N(gŒ))], for gŒ=g−1, g [ 1. (189)

In terms of this duality, the central charge takes the simple expression:

c=(3 − 2g)(3 − 2gŒ). (190)

11. RELATION TO THE SLEo PROCESS

An introduction to the stochastic Löwner evolution process (SLEo)
can be found in ref. 71. This process essentially describes the cluster hulls
we have introduced above. They can be simple or self-intersecting paths.
The SLEo is parameterized by o, which describes the rate of an auxiliary
Brownian motion, which is the source to the process. When o ¥ [0, 4], the
random curve is simple, while for o ¥ (4, 8), the curve is a self-coiling path.
For o \ 8 the path is space filling. The correspondence to our parameters,
the central charge c, the string susceptibility exponent c, or the Coulomb
gas constant g, is as follows.

In the original work by Schramm, (39) the variance of the Gaussian
winding angle of a SLEo of size R was calculated, and found to be `o ln R.
In ref. 73 we found, for instance for the O(N) model, the variance
`(4/g) ln R, from which we immediately infer the identity

o=
4
g

. (191)

The low-temperature branch g ¥ [1
2 , 1) of the O(N) model, for

N ¥ [0, 2), indeed corresponds to o ¥ (4, 8] and describes non simple
curves, while N ¥ [ − 2, 0], g ¥ [0, 1

2] corresponds to o \ 8. The critical
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point branch g ¥ [1, 3
2], N ¥ [0, 2] gives o ¥ [8

3 , 4], while g ¥ [3
2 , 2],

N ¥ [ − 2, 0] gives o ¥ [2, 8
3]. The range o ¥ [0, 2) probably corresponds to

higher multicritical points with g > 2. Owing to Eq. (183) for c, we have

c=1 −
4
o

, o [ 4; c=1 −
o

4
, o \ 4. (192)

The central charge (112) or (182) is accordingly:

c=1 − 24 1o

4
− 12

2;o, (193)

an expression which of course is symmetric under the duality o/4 Q

4/o=oŒ, or

ooŒ=16,

reflecting the symmetry under ggŒ=1. (34) The self-dual form of the central
charge is accordingly:

c=1
4(6 − o)(6 − oŒ). (194)

From Eqs. (185) and (184) we respectively find

DH=1+
1
8

o, (195)

DEP=1+
2
o

J(o − 4)+
o

8
J(4 − o), (196)

in agreement with later results in probability theory. (74) For o [ 4, we have
DEP(o)=DH(o). For o \ 4, the self-coiling scaling paths obey the duality
equation (188) derived above, recast here in the context of the SLEo

process:

[DEP(o) − 1][DH(o) − 1]=1
4 , o \ 4, (197)

where now

DEP(o)=DH(oŒ=16/o) oŒ [ 4.

Thus we predict that the external perimeter of a self-coiling SLEo \ 4 process
is, by duality, the simple path of the SLE(16/o)=oŒ [ 4 process.
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The symmetric point o=4 corresponds to the O(N=2) model, or
Q=4 Potts model, with c=1. The value o=8/3, c=0 corresponds to a
self-avoiding walk, which thus appears (30, 38) as the external frontier of a
o=6 process, namely that of a percolation hull. (39, 42)

Work remains to be done to elucidate the relation between the SLE
construction in probability theory and the Coulomb gas and conformal
invariance approaches, as well as the quantum gravity method described
here.
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